9(5-3x)=1/2x+4

Simple and best practice solution for 9(5-3x)=1/2x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9(5-3x)=1/2x+4 equation:



9(5-3x)=1/2x+4
We move all terms to the left:
9(5-3x)-(1/2x+4)=0
Domain of the equation: 2x+4)!=0
x∈R
We add all the numbers together, and all the variables
9(-3x+5)-(1/2x+4)=0
We multiply parentheses
-27x-(1/2x+4)+45=0
We get rid of parentheses
-27x-1/2x-4+45=0
We multiply all the terms by the denominator
-27x*2x-4*2x+45*2x-1=0
Wy multiply elements
-54x^2-8x+90x-1=0
We add all the numbers together, and all the variables
-54x^2+82x-1=0
a = -54; b = 82; c = -1;
Δ = b2-4ac
Δ = 822-4·(-54)·(-1)
Δ = 6508
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6508}=\sqrt{4*1627}=\sqrt{4}*\sqrt{1627}=2\sqrt{1627}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(82)-2\sqrt{1627}}{2*-54}=\frac{-82-2\sqrt{1627}}{-108} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(82)+2\sqrt{1627}}{2*-54}=\frac{-82+2\sqrt{1627}}{-108} $

See similar equations:

| 2=7.5x+125=5.3x+22 | | 3+1.50x=1+5.00 | | 1=9.4x+1412=5.1x+32 | | 9x-7+4x-13=-124 | | 8x+44+40=180 | | 2=11x+195=6x+9 | | 355+5a=0+5a | | 5h-8=3h+16 | | 1=7x+98=3.8x+28 | | 3(w+5)+2=6w-(13-12w) | | 49t=12 | | 2=7.8x+147=3.9x+27 | | C=a/a+12-180 | | −6x−4=20 | | 16+8r-4r-4=24 | | 2x+13+59=180 | | 3x+2/3+3x-5/4-3x-8/8=16 | | 7(4-4x)=-196 | | n−1=3 | | 7x-2(4x-2)=17 | | k/9-3=-1 | | 6-n=7 | | 36(1/7x+2)=180 | | 13+a9=14 | | 6x-9+3x+12=12 | | 5w-3=3w÷15 | | (A=2x+20) | | A=600-10p | | 8x-32=2x+37 | | -42=2x-7x-7x | | 0.5(4-6x)=10 | | 4(1-x)+3=-2(x-1) |

Equations solver categories