9(9+20)=(x-2)(x+6)

Simple and best practice solution for 9(9+20)=(x-2)(x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9(9+20)=(x-2)(x+6) equation:



9(9+20)=(x-2)(x+6)
We move all terms to the left:
9(9+20)-((x-2)(x+6))=0
We add all the numbers together, and all the variables
-((x-2)(x+6))+929=0
We multiply parentheses ..
-((+x^2+6x-2x-12))+929=0
We calculate terms in parentheses: -((+x^2+6x-2x-12)), so:
(+x^2+6x-2x-12)
We get rid of parentheses
x^2+6x-2x-12
We add all the numbers together, and all the variables
x^2+4x-12
Back to the equation:
-(x^2+4x-12)
We get rid of parentheses
-x^2-4x+12+929=0
We add all the numbers together, and all the variables
-1x^2-4x+941=0
a = -1; b = -4; c = +941;
Δ = b2-4ac
Δ = -42-4·(-1)·941
Δ = 3780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3780}=\sqrt{36*105}=\sqrt{36}*\sqrt{105}=6\sqrt{105}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-6\sqrt{105}}{2*-1}=\frac{4-6\sqrt{105}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+6\sqrt{105}}{2*-1}=\frac{4+6\sqrt{105}}{-2} $

See similar equations:

| -3x+27=18 | | -x=-5/4 | | 5w+2=20+3w | | 4x-5x=24 | | -3(x+2)=5x | | 3+5x=24 | | x+57=109 | | 8.x=3/(-2) | | 39=5h-11 | | -2/3m-1/6m=-5 | | (x−6)(x−3)=0 | | -3x+9/7x+6=0 | | 39=5h=11 | | 2x=7-6 | | 6.x=3/2 | | –(j+–3)+–3=–3 | | 2x+15=5(x-3) | | x*x-45x-9000=0 | | x.7=5/14 | | 9e-7=7e-11* | | x*2-45x-9000=0 | | 14x-x-8x-5x=8+8 | | x.5=5/2 | | v/15=15 | | -3x+2(-2)=4 | | 180=(180-18+3x)+2x+20 | | –2y−8=2y | | G(r)=-5+13 | | −4x2+42=−102 | | 48+(2x+4)=180 | | 2x+5+3x=3x-5 | | 3y+4y=-14 |

Equations solver categories