9(d-2)=3(d-12)d=

Simple and best practice solution for 9(d-2)=3(d-12)d= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9(d-2)=3(d-12)d= equation:



9(d-2)=3(d-12)d=
We move all terms to the left:
9(d-2)-(3(d-12)d)=0
We multiply parentheses
9d-(3(d-12)d)-18=0
We calculate terms in parentheses: -(3(d-12)d), so:
3(d-12)d
We multiply parentheses
3d^2-36d
Back to the equation:
-(3d^2-36d)
We get rid of parentheses
-3d^2+9d+36d-18=0
We add all the numbers together, and all the variables
-3d^2+45d-18=0
a = -3; b = 45; c = -18;
Δ = b2-4ac
Δ = 452-4·(-3)·(-18)
Δ = 1809
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1809}=\sqrt{9*201}=\sqrt{9}*\sqrt{201}=3\sqrt{201}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-3\sqrt{201}}{2*-3}=\frac{-45-3\sqrt{201}}{-6} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+3\sqrt{201}}{2*-3}=\frac{-45+3\sqrt{201}}{-6} $

See similar equations:

| x*0.15=215 | | 10=7x+2-5 | | -8x+60=10 | | 4.m/4=16.4 | | 9x+4x=13+2 | | 25x+425=15+875 | | 7x+5x+3=14x-19 | | 3j/4+15=34 | | ​z+3z+25=125​z= | | (3x-1)2=34 | | 18^2x-97x-130=0 | | -10j-12=15 | | 18^2-97x-130=0 | | 7x=1/2(33+x+6) | | 3j14+15=34 | | 7x=1/2(33) | | 9=12-3k | | 6/9m-12=-10 | | 2g+11=19 | | x+4.6=9.12 | | 4/28=x/7 | | 1/2x-9=-16 | | x17=5 | | 6x-21=7 | | 3(t4)-2(2t+3)=-4 | | k(18)=6(18)-12 | | 9.6(b+5)=4.8b+81.6 | | 2-16t=6(-3t | | 2x+15+2x=24+4x | | 5(5x-11)=60x | | 3x²+x-1/9x-3=0 | | 3k+2=14 |

Equations solver categories