9(m+2)=-6m(m+7)

Simple and best practice solution for 9(m+2)=-6m(m+7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9(m+2)=-6m(m+7) equation:



9(m+2)=-6m(m+7)
We move all terms to the left:
9(m+2)-(-6m(m+7))=0
We multiply parentheses
9m-(-6m(m+7))+18=0
We calculate terms in parentheses: -(-6m(m+7)), so:
-6m(m+7)
We multiply parentheses
-6m^2-42m
Back to the equation:
-(-6m^2-42m)
We get rid of parentheses
6m^2+42m+9m+18=0
We add all the numbers together, and all the variables
6m^2+51m+18=0
a = 6; b = 51; c = +18;
Δ = b2-4ac
Δ = 512-4·6·18
Δ = 2169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2169}=\sqrt{9*241}=\sqrt{9}*\sqrt{241}=3\sqrt{241}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(51)-3\sqrt{241}}{2*6}=\frac{-51-3\sqrt{241}}{12} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(51)+3\sqrt{241}}{2*6}=\frac{-51+3\sqrt{241}}{12} $

See similar equations:

| -7u+5(u-5)=-11 | | 14x+6=15x-2 | | 4h/7-4=2/19/28 | | -12d-6=-2(d+3)=-24 | | 2=-5+a | | 4h/7-4=219/28 | | 5w+43=9(w+3) | | -34=-8y+2(y+7) | | 3c=450 | | 5/7y-9=4 | | 50x-10=20x+50 | | .4x+.25x=39 | | -5=-7+e | | -7w+3(w-6)=-26 | | 3+r=27 | | 24=-4(7x-6) | | 5(3-x)-2(4-3x=11-2(x-1) | | 14x+42=7(3x+2) | | -17+37=-4(x+7) | | 14x+42=7(3x+2 | | -17+37=-4(x+70 | | -3/2n=-21/20 | | 22=3v-14 | | 144=k2 | | -10=10(9+k | | 6(x-7)+8=-34 | | g=34/35/56 | | 39+0.90(75x)+25x=1149+63.75x | | 14.35=2s+4.19 | | 2x-6+3x+11+90=180 | | 39+0.90(75x)+25xx=1149+63.75x | | 36=-4(8x-9) |

Equations solver categories