9+(1)/(5)x=(3)/(10)x

Simple and best practice solution for 9+(1)/(5)x=(3)/(10)x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9+(1)/(5)x=(3)/(10)x equation:



9+(1)/(5)x=(3)/(10)x
We move all terms to the left:
9+(1)/(5)x-((3)/(10)x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 10x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/5x-(+3/10x)+9=0
We get rid of parentheses
1/5x-3/10x+9=0
We calculate fractions
10x/50x^2+(-15x)/50x^2+9=0
We multiply all the terms by the denominator
10x+(-15x)+9*50x^2=0
Wy multiply elements
450x^2+10x+(-15x)=0
We get rid of parentheses
450x^2+10x-15x=0
We add all the numbers together, and all the variables
450x^2-5x=0
a = 450; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·450·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*450}=\frac{0}{900} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*450}=\frac{10}{900} =1/90 $

See similar equations:

| 2.50=0.25x1.000 | | X=6.y=102 | | 9x+4-2x=25 | | 4x+9=x-23 | | 6x-5+3x-5=35 | | 6x-5+3x-5+3=35 | | 5+7x=4x+12 | | 5x-5)=12 | | 9m-6=3.5m-6 | | 2(y+2/5)=-13 | | 8x-2=7x-1 | | x-95=73 | | X=23+y | | 20x-6=250 | | 5a-6=-26 | | 2x+16=2x+8 | | 3p=13p | | -10(x-17)=-3 | | 3x-2x+x=11-10+11 | | 8x+46=4x+70 | | 88+37=x | | H=45-m | | Y=4x(0.4) | | 3(2c+8)=30 | | 4x+1+5x-8=90 | | 17=3u-13 | | 3(4x+5)=54 | | 7-2x/3=3+6x/7 | | 12x-8=27x+4 | | 0y=-2.5 | | 672=1/3(56x) | | y=-2-4(2.5) |

Equations solver categories