If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9+2x=(1/2)(18+4x)
We move all terms to the left:
9+2x-((1/2)(18+4x))=0
Domain of the equation: 2)(18+4x))!=0We add all the numbers together, and all the variables
x∈R
2x-((+1/2)(4x+18))+9=0
We multiply parentheses ..
-((+4x^2+1/2*18))+2x+9=0
We multiply all the terms by the denominator
-((+4x^2+1+2x*2*18))+9*2*18))=0
We calculate terms in parentheses: -((+4x^2+1+2x*2*18)), so:We add all the numbers together, and all the variables
(+4x^2+1+2x*2*18)
We get rid of parentheses
4x^2+2x*2*18+1
Wy multiply elements
4x^2+72x*1+1
Wy multiply elements
4x^2+72x+1
Back to the equation:
-(4x^2+72x+1)
-(4x^2+72x+1)=0
We get rid of parentheses
-4x^2-72x-1=0
a = -4; b = -72; c = -1;
Δ = b2-4ac
Δ = -722-4·(-4)·(-1)
Δ = 5168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5168}=\sqrt{16*323}=\sqrt{16}*\sqrt{323}=4\sqrt{323}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-4\sqrt{323}}{2*-4}=\frac{72-4\sqrt{323}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+4\sqrt{323}}{2*-4}=\frac{72+4\sqrt{323}}{-8} $
| -48=6n+6 | | 10x+5+8x+25=180 | | 1/2(x+1/4)=2/3x-1/6 | | 5x-3+1=9-3 | | (-4x)/((x-2)^3)=0 | | 3/5x+1/2x-4=7 | | 4x-2=5x-43 | | 8=3(x+2/3 | | 8/x+1+2/3=16/6 | | 3(-2)+2y=2 | | X^-5x-24=0 | | 20/2a=2 | | 3x+7=16-7+6x | | 5x+8=3x+5 | | (5-x)+6-3=10+1 | | N+11=5n-17 | | 0.8x-0.3x=3.5 | | 3n-3=5n-43 | | y-8.5=8 | | 37=x-43 | | z-20=17 | | y/4.2=-8 | | 3x=1/2x+22.5 | | (2x+40)=(x+125) | | 7^(x-7)=49 | | 5/7x=4/5 | | 3*(x+2)-2=9-3 | | y2+5y-7=0 | | 32=6x-7×(-2) | | 6x+3x+2346=540 | | 2x+x1=4x-1 | | -3.1+x/3=-7.9 |