If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9+4x=(1/2)(18+8x)
We move all terms to the left:
9+4x-((1/2)(18+8x))=0
Domain of the equation: 2)(18+8x))!=0We add all the numbers together, and all the variables
x∈R
4x-((+1/2)(8x+18))+9=0
We multiply parentheses ..
-((+8x^2+1/2*18))+4x+9=0
We multiply all the terms by the denominator
-((+8x^2+1+4x*2*18))+9*2*18))=0
We calculate terms in parentheses: -((+8x^2+1+4x*2*18)), so:We add all the numbers together, and all the variables
(+8x^2+1+4x*2*18)
We get rid of parentheses
8x^2+4x*2*18+1
Wy multiply elements
8x^2+144x*1+1
Wy multiply elements
8x^2+144x+1
Back to the equation:
-(8x^2+144x+1)
-(8x^2+144x+1)=0
We get rid of parentheses
-8x^2-144x-1=0
a = -8; b = -144; c = -1;
Δ = b2-4ac
Δ = -1442-4·(-8)·(-1)
Δ = 20704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20704}=\sqrt{16*1294}=\sqrt{16}*\sqrt{1294}=4\sqrt{1294}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-144)-4\sqrt{1294}}{2*-8}=\frac{144-4\sqrt{1294}}{-16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-144)+4\sqrt{1294}}{2*-8}=\frac{144+4\sqrt{1294}}{-16} $
| 3(4-6y)+4=3 | | 4x^2=(2x^2+14x-30) | | 0=5x^2-3x-2 | | 9^x-5=27 | | 2(16+w)=52 | | 5z=8z-12 | | X2+10x+24=(x+4) | | 7x+3x=1-2x | | (7x)=(12x+20)=(20x-35) | | -12Y-10=-6y=14 | | (7x)=(12x+20)(20x-35) | | 2/3(x+7)=4x+5 | | 14+3x=-(2+14x | | y=6-4(2) | | n^2-3n-4=2n-10 | | 3x+4=5x−9 | | 10y×6=-16 | | 15y-5y+3y-10y-2y=20 | | 2(−2+3x)=2(7+3x) | | 2(x-$4.00)=$22.00 | | 1/2c(1-1/3)=1/2 | | -8x+4x-1=35 | | y-4/5=61/4 | | -12x^2+3=0 | | 2+7x=18+3x | | 5x-1=500 | | x-112=9(2x+3)-3 | | 80+x=2x+16 | | 28^2=5x^2 | | 5/9(f-32)=69.1 | | 3(h+9)=18 | | x+3-2x+9=-13 |