9/10z-2=9/20z+3

Simple and best practice solution for 9/10z-2=9/20z+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9/10z-2=9/20z+3 equation:



9/10z-2=9/20z+3
We move all terms to the left:
9/10z-2-(9/20z+3)=0
Domain of the equation: 10z!=0
z!=0/10
z!=0
z∈R
Domain of the equation: 20z+3)!=0
z∈R
We get rid of parentheses
9/10z-9/20z-3-2=0
We calculate fractions
180z/200z^2+(-90z)/200z^2-3-2=0
We add all the numbers together, and all the variables
180z/200z^2+(-90z)/200z^2-5=0
We multiply all the terms by the denominator
180z+(-90z)-5*200z^2=0
Wy multiply elements
-1000z^2+180z+(-90z)=0
We get rid of parentheses
-1000z^2+180z-90z=0
We add all the numbers together, and all the variables
-1000z^2+90z=0
a = -1000; b = 90; c = 0;
Δ = b2-4ac
Δ = 902-4·(-1000)·0
Δ = 8100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{8100}=90$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-90}{2*-1000}=\frac{-180}{-2000} =9/100 $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+90}{2*-1000}=\frac{0}{-2000} =0 $

See similar equations:

| 4x-2+2x=-2x+13+3x | | -2(-7-2k)-5k=14-k | | 4.35=a=+3.25 | | 7x+3-3x-5=2x+2 | | 3x-15+8x-40=22 | | 3.1x+4.6=10.8  | | 36-3x=3(x+8) | | -2=x+.5x | | 8(-3+x)-8=-88 | | 5x–1/4=3x–5/4 | | 36=10x-6x | | 18x=-9+4+6 | | 5x–¼=3x–5/4 | | 4x-69=-5(2x-3) | | 3/5p-1/5=2/5 | | 5(9x-1)=5x-245 | | 2/6y+1/6=6 | | -6-3+6x=-2x+3+20 | | 1/4x+1/3x+1/4=5/6 | | 8x-50=40 | | -4x-5(2x-3)=-83 | | 3/4x=1x-2 | | 2/6y+1/6=2 | | -4(8+5x)=-4x-90-6 | | 2+h=6 | | 3x-10x-25=16-20x+3 | | -10x-6x+3x=12 | | 2x5=-5 | | 5/x+2=1/x-4 | | (4−x)(x−3)=0 | | 11v-8v=3 | | -12=+3-2k-3k |

Equations solver categories