9/10z-4=-19/20z+1

Simple and best practice solution for 9/10z-4=-19/20z+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9/10z-4=-19/20z+1 equation:



9/10z-4=-19/20z+1
We move all terms to the left:
9/10z-4-(-19/20z+1)=0
Domain of the equation: 10z!=0
z!=0/10
z!=0
z∈R
Domain of the equation: 20z+1)!=0
z∈R
We get rid of parentheses
9/10z+19/20z-1-4=0
We calculate fractions
180z/200z^2+190z/200z^2-1-4=0
We add all the numbers together, and all the variables
180z/200z^2+190z/200z^2-5=0
We multiply all the terms by the denominator
180z+190z-5*200z^2=0
We add all the numbers together, and all the variables
370z-5*200z^2=0
Wy multiply elements
-1000z^2+370z=0
a = -1000; b = 370; c = 0;
Δ = b2-4ac
Δ = 3702-4·(-1000)·0
Δ = 136900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{136900}=370$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(370)-370}{2*-1000}=\frac{-740}{-2000} =37/100 $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(370)+370}{2*-1000}=\frac{0}{-2000} =0 $

See similar equations:

| -1=12+p | | 7x²-60x-27=0 | | d/5+3d-10=1/3d+33 | | -y+2/15=5/9 | | (1/3y)+3=(1/7y) | | 6m-4=-16 | | (1/3)y+3=(1/7)y | | (y+9)20=140 | | 109=5u+9 | | -28=7(m+3) | | 13y+3=17y | | y÷4-2=9 | | -17x-20=-14+70= | | 8=(3/4)b | | 8=3/4*b | | 0=t^2-9t+14 | | 68=8r-4 | | x/10=400 | | 9(x-2)/6=3(x+1)/5 | | 5/8x-4=6 | | (x+10)^5=-243 | | (5÷2)n-n=3+(3÷2)n | | 9(x-2)/6=3(x+2)/6 | | Y-10x=2x+3 | | .5h=24 | | 6(x-4)/3=2(x+2)/7 | | 10y-15=4y+2 | | 5÷2n-n=3+3÷2n | | -4(2x-1)+1=-8x+5 | | 2/x=4/10 | | 2(c-12)=-22 | | 2/3x−9−2x+2=1 |

Equations solver categories