If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9/2k+-7/2=-3-4/5k
We move all terms to the left:
9/2k+-7/2-(-3-4/5k)=0
Domain of the equation: 2k!=0
k!=0/2
k!=0
k∈R
Domain of the equation: 5k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
9/2k-(-4/5k-3)+-7/2=0
We add all the numbers together, and all the variables
9/2k-(-4/5k-3)-7/2=0
We get rid of parentheses
9/2k+4/5k+3-7/2=0
We calculate fractions
45k/40k^2+32k/40k^2+(-35k)/40k^2+3=0
We multiply all the terms by the denominator
45k+32k+(-35k)+3*40k^2=0
We add all the numbers together, and all the variables
77k+(-35k)+3*40k^2=0
Wy multiply elements
120k^2+77k+(-35k)=0
We get rid of parentheses
120k^2+77k-35k=0
We add all the numbers together, and all the variables
120k^2+42k=0
a = 120; b = 42; c = 0;
Δ = b2-4ac
Δ = 422-4·120·0
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-42}{2*120}=\frac{-84}{240} =-7/20 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+42}{2*120}=\frac{0}{240} =0 $
| 9/2k+-7/2=-3—4/5k | | 7^3+57=d^2 | | 7x-14x=-7x | | 94.2=2×3.14×r | | (2x+16)°=3x° | | 6^x-2=23 | | 3x^2+2x-86=0 | | p3=1000 | | |x+3|-2=2 | | (m–7=23) | | 3x=5x+54 | | 14x-2x+3=3(5x+9)* | | 5x=3x-54 | | 3(6x)=15 | | 1.3x=-4 | | (2x+1)^2/3=18 | | z/3-4=8 | | 6.7x=49* | | 6,4-9,3b=25,3-3,9b | | (3x+22)=(5x-18) | | 0.5x+3=0.2(x-1) | | 5.25=w/50-25.75 | | 14y+15=0 | | −3x−11=3(x−2x)+12 | | 1/4d=16 | | 4x2-8x-96=0 | | 28/36=x/18 | | 10-(x+8)=3x+4x+1 | | -6,5=1,3/w | | B=4A=10B+A/2(Bx13)= | | 40x+0.05=0.15 | | 7=18x+9-5x |