9/2x+5=17/x

Simple and best practice solution for 9/2x+5=17/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9/2x+5=17/x equation:



9/2x+5=17/x
We move all terms to the left:
9/2x+5-(17/x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
9/2x-(+17/x)+5=0
We get rid of parentheses
9/2x-17/x+5=0
We calculate fractions
9x/2x^2+(-34x)/2x^2+5=0
We multiply all the terms by the denominator
9x+(-34x)+5*2x^2=0
Wy multiply elements
10x^2+9x+(-34x)=0
We get rid of parentheses
10x^2+9x-34x=0
We add all the numbers together, and all the variables
10x^2-25x=0
a = 10; b = -25; c = 0;
Δ = b2-4ac
Δ = -252-4·10·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-25}{2*10}=\frac{0}{20} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+25}{2*10}=\frac{50}{20} =2+1/2 $

See similar equations:

| 4(x-5)=2(x+4) | | 3+x/5-x-3/3=10 | | 3k-7=5k-19 | | 36-2x+45x-1=0 | | k/3+23=-8 | | p/10+6=11.5 | | (2x-2)+(3x-)+(9x-9)=1 | | 7h+7=4h+10 | | 7q-5=3q+27 | | (3x-3)-(3-3x)=3 | | 46=1-9u | | 2x3=-24 | | w/8+5=16 | | 10x-15=9x-20 | | -21=3(y-6) | | b/5-3=15 | | p/4+7=15 | | 8p-10=4p+6 | | 5a-8=4a-2 | | (2x-1)+(2x+1)=28 | | 45°+3x+16°+68°=180° | | 8x+51∘+6x−25∘=180 | | (x+6)+(4x+6)=62 | | 12-x/3=-8 | | –6s=3−5s | | 5i-1=2i+23 | | 4u=20-u | | –7y−1=–6y | | -8x+32=4(-2+4) | | 12u=21+5u | | 5t^2+23t=0 | | 5n-7=4n |

Equations solver categories