If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9/2x+6-7/5x+15=2/3
We move all terms to the left:
9/2x+6-7/5x+15-(2/3)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 5x!=0We add all the numbers together, and all the variables
x!=0/5
x!=0
x∈R
9/2x-7/5x+6+15-(+2/3)=0
We add all the numbers together, and all the variables
9/2x-7/5x+21-(+2/3)=0
We get rid of parentheses
9/2x-7/5x+21-2/3=0
We calculate fractions
(-100x^2)/90x^2+405x/90x^2+(-126x)/90x^2+21=0
We multiply all the terms by the denominator
(-100x^2)+405x+(-126x)+21*90x^2=0
Wy multiply elements
(-100x^2)+1890x^2+405x+(-126x)=0
We get rid of parentheses
-100x^2+1890x^2+405x-126x=0
We add all the numbers together, and all the variables
1790x^2+279x=0
a = 1790; b = 279; c = 0;
Δ = b2-4ac
Δ = 2792-4·1790·0
Δ = 77841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{77841}=279$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(279)-279}{2*1790}=\frac{-558}{3580} =-279/1790 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(279)+279}{2*1790}=\frac{0}{3580} =0 $
| 2h^2=72 | | 28-4n=16 | | -6x+4(-2x+50)=-148 | | 6b+3=9+7b | | 6x-4-3x=3x-4 | | x=500+12Q+4x^2+x^2 | | 1/16x=4/1/2 | | 89d=400+20d | | 3.2-12x=-16 | | 10+7r=5r+7r+r | | x=500+12Q+4x^2+x^2x8 | | C=7.49+0.50x | | 30=10-5x | | 5/3=25/a | | x-5(9x+4)=0 | | ¼(x-16)=½x+3-¼x-7 | | -19s-43s-(-35s)-21s+20s=-28 | | x/7+x/2=3 | | 1/4(12c-4)=15c+15 | | 5x+2=8x-# | | 3n=-57 | | 9x+2(2-1/2x)=9-2x | | 5x+3+90-2x=180 | | 360=5c+10 | | 6=-6u+18− | | 6d+(-5d)+9d-(-9d)+(-18d)=-11 | | 11x-3x+84=11x+57 | | 4.3g+10=2.3g+18 | | 11/6x=3x-14 | | h/7+h/2=3 | | x+13+3x=63 | | 11x-3x-84=11x+57 |