If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9/4x+1/8+7/8x=1/16
We move all terms to the left:
9/4x+1/8+7/8x-(1/16)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 8x!=0We add all the numbers together, and all the variables
x!=0/8
x!=0
x∈R
9/4x+7/8x+1/8-(+1/16)=0
We get rid of parentheses
9/4x+7/8x+1/8-1/16=0
We calculate fractions
(-2048x^2)/32768x^2+73728x/32768x^2+448x/32768x^2+64x/32768x^2=0
We multiply all the terms by the denominator
(-2048x^2)+73728x+448x+64x=0
We add all the numbers together, and all the variables
(-2048x^2)+74240x=0
We get rid of parentheses
-2048x^2+74240x=0
a = -2048; b = 74240; c = 0;
Δ = b2-4ac
Δ = 742402-4·(-2048)·0
Δ = 5511577600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5511577600}=74240$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(74240)-74240}{2*-2048}=\frac{-148480}{-4096} =36+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(74240)+74240}{2*-2048}=\frac{0}{-4096} =0 $
| 14+3y=50 | | 48=-8q | | 64=32^-x-3 | | 21/4*x+1/8+7/8*x=1/16 | | 0.25x-7=4(x-2) | | 6x+-4=6 | | 6=20z+9 | | 19b+40=4b | | 6=z+20/9 | | 4/3/10-(2/2/5x+5/1/2)=1/2(-3/3/5x+1/1/5 | | 9v+24=-12 | | 2-2u=-8 | | 10=4+3r | | 4(2+5p)=108 | | x/9-10=0 | | 17=7p+38 | | x+.2x=8100 | | 8x+7=-5-9 | | x-225/25=-1.0364 | | 15^x-8=2^2x | | t÷4-1=10 | | 9(3x+5)=9x+15 | | 5x+31=61 | | 4x+1,3=-5 | | 7+7x=-29=x | | 2x+5+7x=3+9x | | 9=40y | | 3+12x=2-5x | | -6(t=2)=36 | | 0,9x+3,2=4,3x-5,8 | | b−7=9 | | 6w+10=28 |