9/5x+20=9/x+4=4/5

Simple and best practice solution for 9/5x+20=9/x+4=4/5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9/5x+20=9/x+4=4/5 equation:



9/5x+20=9/x+4=4/5
We move all terms to the left:
9/5x+20-(9/x+4)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: x+4)!=0
x∈R
We get rid of parentheses
9/5x-9/x-4+20=0
We calculate fractions
9x/5x^2+(-45x)/5x^2-4+20=0
We add all the numbers together, and all the variables
9x/5x^2+(-45x)/5x^2+16=0
We multiply all the terms by the denominator
9x+(-45x)+16*5x^2=0
Wy multiply elements
80x^2+9x+(-45x)=0
We get rid of parentheses
80x^2+9x-45x=0
We add all the numbers together, and all the variables
80x^2-36x=0
a = 80; b = -36; c = 0;
Δ = b2-4ac
Δ = -362-4·80·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1296}=36$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-36}{2*80}=\frac{0}{160} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+36}{2*80}=\frac{72}{160} =9/20 $

See similar equations:

| 6(7h+40)=180 | | -7d-6+3d=-30 | | -187=-13w | | 5*1/2x=4 | | (2x-2)+(x+1)+x+(x+1)=75 | | 20+3x-12=4x-8 | | -107-8x=17x+19 | | 28=(x) | | (-2)0+3y=6 | | X+1/3=4-x+2/5 | | x/2+13=-15 | | -2(2x-6)=18 | | 14x-10x=20 | | X+2/18=8/9+x-5/4 | | 3x2-4x-207=0 | | -85-4v=13v+14 | | -7x-6x=22 | | (-2)6+3y=6 | | 3/4x-8=2 | | x=18.5-5 | | x-4=3-2x | | -2•6+3y=6 | | 1/2-(3a+5)=10 | | -12k-2k=-2k-13 | | n=7.3-0.04 | | 6x−9=5x−6 | | 77x+25x=300+25x | | 11/15(x+2)=8 | | 12-5(x+3)+7=-6 | | 12=5(x+3)-(x-7 | | 7x-12=-3x-8 | | 6(3y+5)=-26 |

Equations solver categories