If it's not what You are looking for type in the equation solver your own equation and let us solve it.
90(2b-90)+(b+45)+b+3/2b=540
We move all terms to the left:
90(2b-90)+(b+45)+b+3/2b-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+90(2b-90)+(b+45)+3/2b-540=0
We multiply parentheses
b+180b+(b+45)+3/2b-8100-540=0
We get rid of parentheses
b+180b+b+3/2b+45-8100-540=0
We multiply all the terms by the denominator
b*2b+180b*2b+b*2b+45*2b-8100*2b-540*2b+3=0
Wy multiply elements
2b^2+360b^2+2b^2+90b-16200b-1080b+3=0
We add all the numbers together, and all the variables
364b^2-17190b+3=0
a = 364; b = -17190; c = +3;
Δ = b2-4ac
Δ = -171902-4·364·3
Δ = 295491732
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{295491732}=\sqrt{4*73872933}=\sqrt{4}*\sqrt{73872933}=2\sqrt{73872933}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17190)-2\sqrt{73872933}}{2*364}=\frac{17190-2\sqrt{73872933}}{728} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17190)+2\sqrt{73872933}}{2*364}=\frac{17190+2\sqrt{73872933}}{728} $
| (m+5)+(3m-5)=180 | | 1-x=0.07 | | −4(1.5x−0.5)=−15 | | 10r-40=10(r-4) | | (6x-10)=(4x+1) | | 3(y-3)-1=-2(-7y+2)-7y | | x-43=62-4x | | -u/2+7=-6 | | 5x-12+4x-6=180 | | -9s=-6-10s | | (1/3)(6x+27)=12 | | 200m-125m+45675=42435-150m | | 32-2y=18 | | 7r+34=-2(1-6r)+r | | 11(1+7n)=-58+8n | | 3(4x+7)=-45+30 | | 2+3(1-5x)=-85 | | x/3-10=-22 | | 9x-3=5x+8 | | 3+6n=4n-n | | 3(4x+7)=-45 | | 3(1x+8)-4=41 | | 7r+34=-2 | | -4x10=-14 | | 0=50-16x^2 | | 2s-6=10 | | 10x-2=-101 | | h/3=27 | | 2(x+2)-4=23 | | 5x-12+4x-6=90 | | 1/3x+4=6-2/3x | | 11(7+11x)=-36+8x |