If it's not what You are looking for type in the equation solver your own equation and let us solve it.
90+(2b-45)+(b+45)+3/2b+b=540
We move all terms to the left:
90+(2b-45)+(b+45)+3/2b+b-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+(2b-45)+(b+45)+3/2b-450=0
We get rid of parentheses
b+2b+b+3/2b-45+45-450=0
We multiply all the terms by the denominator
b*2b+2b*2b+b*2b-45*2b+45*2b-450*2b+3=0
Wy multiply elements
2b^2+4b^2+2b^2-90b+90b-900b+3=0
We add all the numbers together, and all the variables
8b^2-900b+3=0
a = 8; b = -900; c = +3;
Δ = b2-4ac
Δ = -9002-4·8·3
Δ = 809904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{809904}=\sqrt{16*50619}=\sqrt{16}*\sqrt{50619}=4\sqrt{50619}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-900)-4\sqrt{50619}}{2*8}=\frac{900-4\sqrt{50619}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-900)+4\sqrt{50619}}{2*8}=\frac{900+4\sqrt{50619}}{16} $
| Y=k24^2 | | 18/81=16/x | | Y=k(24)^2 | | 23=x/4-15 | | 1=1÷4n+1 | | 2x+24°+5x-12°=180 | | 6x+13=5x+9 | | 63=2p+7p | | -4=9(t+7)-14 | | 10y+5=26 | | (X-30)+(120-x)+x+x+(135-x)+(x+75)+60=600 | | -14=9(t+7)–14 | | -8b+3b=-25 | | -4.3x+7=-4.5x+9 | | 45=-10d+d | | 10(r-7)-7=-87 | | 7^3x=342 | | -3y-33=-7(y+3) | | 6x+6=6(×+1) | | 10(r–7)–7=-87 | | 2/7a-6=21 | | -24=8(u+5) | | -8(x+4)=-6x-24 | | 3.1x+7-7.4x=1.5x-6x+9 | | (2x-26)=(x-16) | | -7x+33=-5(x-5) | | -7+33=-5(x-5) | | 6x+4(1-x)=10x+2(1-x) | | 7(x-4)=-8x+4 | | 5x=4x+2(1-x) | | 7(x-4)=8x+4 | | 90x+15=720 |