If it's not what You are looking for type in the equation solver your own equation and let us solve it.
90+(2b-90)+3/2b+b+(b+45)=540
We move all terms to the left:
90+(2b-90)+3/2b+b+(b+45)-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+(2b-90)+3/2b+(b+45)-450=0
We get rid of parentheses
b+2b+3/2b+b-90+45-450=0
We multiply all the terms by the denominator
b*2b+2b*2b+b*2b-90*2b+45*2b-450*2b+3=0
Wy multiply elements
2b^2+4b^2+2b^2-180b+90b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $
| 18x-40x=0 | | 109=-5(-4n-5)-8n | | x^2-15=60 | | 1+3/5q-24=2/5+.4 | | -15=1+7x+5 | | 22.05=4g+3.89 | | -4(1+5m)-3m=157 | | 72=-4m | | (3x-2)=4x-6 | | 27=6a+5a-29 | | 32=4(5n-7)+8(n-3) | | 5(2x+7)-4x=2x-3 | | .08x=1 | | m/9-2=-2 | | 10+10x=26+4x | | T(t)=42-0.7t | | 20.5-((2x8.1)=0 | | x(x+1)(x+2)=13800 | | 1/3y+1/4=15 | | 3x-8=-2(x+14) | | 125=-5-5(-8n+6) | | y=5-4(-1/5) | | 12(10m+12)=10(12m-4) | | -6(m+5)=66 | | 20.5-(2x8.1)=4.3 | | 7x+15-2x+50=8(4+x)+60 | | -5(x+7)=-69 | | n-8+8n=7n | | 2x-14=3x+7 | | (x*x*x)(x/x+8)=x | | -5(2-3x)-x=-24 | | 81^x+4=729^2x-7 |