90+(2x+1)(5x-50)=180

Simple and best practice solution for 90+(2x+1)(5x-50)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 90+(2x+1)(5x-50)=180 equation:



90+(2x+1)(5x-50)=180
We move all terms to the left:
90+(2x+1)(5x-50)-(180)=0
We add all the numbers together, and all the variables
(2x+1)(5x-50)-90=0
We multiply parentheses ..
(+10x^2-100x+5x-50)-90=0
We get rid of parentheses
10x^2-100x+5x-50-90=0
We add all the numbers together, and all the variables
10x^2-95x-140=0
a = 10; b = -95; c = -140;
Δ = b2-4ac
Δ = -952-4·10·(-140)
Δ = 14625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14625}=\sqrt{225*65}=\sqrt{225}*\sqrt{65}=15\sqrt{65}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-95)-15\sqrt{65}}{2*10}=\frac{95-15\sqrt{65}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-95)+15\sqrt{65}}{2*10}=\frac{95+15\sqrt{65}}{20} $

See similar equations:

| t^2+3t+20=0 | | 110-4y=10+2y | | 4n-3=-4n+2n-3 | | 2x+27=67 | | 6x+5(1-4x)=-93 | | -2y+10=y-5 | | -6+5x=1+6x-4 | | -9/5+4/3w=-5/2 | | 6.5=2.5h-11 | | 7(x+4)=3x-14 | | 30+0.07m=59.4 | | (0.55+6.99)x=11.94 | | -3(2x+4)=3(x-1)+9 | | x+58+x+66+76=180 | | 3(-4x+5)=5(-3x+7)=10 | | 5(x-2)+1=7 | | 9p-6=90 | | 6x+4=4(3x-2) | | 90-y=10+15y | | -4+3=12x-5 | | −(5a+6)=2(3a+8 | | A=144m2 | | 3x^2+6x+4x+8= | | 9x+(x+8)=2(5x-4) | | -2(x+1)+6x=6 | | 75-3.53-4y=4y+6 | | 125x-75x+38400=40800-150x | | 2x+27-()=67 | | -x+(-2x-2)=1 | | x+0.35=16 | | 2(x-3)=2(x-4) | | 3x+x+5x-7=353 |

Equations solver categories