90+(b+45)+(2b-90)+3/2b+b=540

Simple and best practice solution for 90+(b+45)+(2b-90)+3/2b+b=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 90+(b+45)+(2b-90)+3/2b+b=540 equation:



90+(b+45)+(2b-90)+3/2b+b=540
We move all terms to the left:
90+(b+45)+(2b-90)+3/2b+b-(540)=0
Domain of the equation: 2b!=0
b!=0/2
b!=0
b∈R
We add all the numbers together, and all the variables
b+(b+45)+(2b-90)+3/2b-450=0
We get rid of parentheses
b+b+2b+3/2b+45-90-450=0
We multiply all the terms by the denominator
b*2b+b*2b+2b*2b+45*2b-90*2b-450*2b+3=0
Wy multiply elements
2b^2+2b^2+4b^2+90b-180b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $

See similar equations:

| 2x+1x=36 | | 2+9(x-9)=10-7(x-4) | | 2x-238=6 | | 3.3=6.1-0.7x | | 2(P^2+8p+12)=0 | | .1/6d+2/3=1/4(d−2) | | 56-14=3x | | (y/2)-5=6 | | X=-6x+175 | | 7a+2=3a-14 | | 180-1/2x=160+1/3x | | 36-x.3÷2=36 | | X^2+x^2+2x+7x-9=36 | | u+8=3u | | 4x+44=7x+15 | | x-2/9=28 | | 3a^2-22a=-17 | | 3x^2+18x-13=0 | | 2x2-2=7 | | −y+35=−8y | | 7x(33-7)=5 | | 19+x÷2=4 | | 4^(x+7)=6 | | 24-n=-3n | | -4x-3(-6x+11)=79 | | 9x-17=44 | | 90*2+0.50x=500 | | 16-2.4n=-8 | | 2h-5=25 | | x^2+15=19 | | 2(2-x)=4(-2+x | | 1/5x+(2)=11 |

Equations solver categories