If it's not what You are looking for type in the equation solver your own equation and let us solve it.
90+b+(b+45)+(2b-90)+3/2b=540
We move all terms to the left:
90+b+(b+45)+(2b-90)+3/2b-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+(b+45)+(2b-90)+3/2b-450=0
We get rid of parentheses
b+b+2b+3/2b+45-90-450=0
We multiply all the terms by the denominator
b*2b+b*2b+2b*2b+45*2b-90*2b-450*2b+3=0
Wy multiply elements
2b^2+2b^2+4b^2+90b-180b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $
| C=9/2(k-28) | | 17-2q=67 | | 5(x+10)+2=-11(x-6)-1 | | 0.18(y-5)=0.04=0.06-2.1 | | 1.5(2x+6)=21 | | 100y+200=3300 | | 3(2x-1)-2(7x-3)=4x-15 | | 2y+10=7 | | 4(2x+4)=9x-7 | | -3k+3(k-6)=18 | | 2x(x)+5x-4=0 | | 4e+9=5e+3 | | 5(4x+5)=3x+4 | | 4x(4-6)=23 | | 11x+6=8x30 | | 8x-10=2x-1 | | a+(3a/2)+(3a/4)=390 | | 1.1=3x-2.5 | | 3x+11=2x+5(x-1) | | 9n^2+n+7=0 | | 3(x-2)−2x+3= −12 | | 4(-2n-6)=-3(1+n)=2n | | 3(x−2)−2x+3= −12 | | 3(x−2)−2x+3=3(x−2)−2x+3= −12−12 | | 116-v=293 | | -3.4n-6.6=-3.4n-3.6 | | 3(2x+9)+12=35 | | 5.19p+6.5=16.09-4.4p | | (5x-17)=(3x+29) | | 4x3=40 | | (3x+30)+x=180 | | 2(x-2+5(x-5)=6 |