If it's not what You are looking for type in the equation solver your own equation and let us solve it.
90+b+3/2b+(2b-90)+(b+45)=540
We move all terms to the left:
90+b+3/2b+(2b-90)+(b+45)-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+3/2b+(2b-90)+(b+45)-450=0
We get rid of parentheses
b+3/2b+2b+b-90+45-450=0
We multiply all the terms by the denominator
b*2b+2b*2b+b*2b-90*2b+45*2b-450*2b+3=0
Wy multiply elements
2b^2+4b^2+2b^2-180b+90b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $
| 3(y-7)=39 | | 4^y=262144 | | 24x^2=48 | | X²+9x-126=0 | | 6-5/2=h | | 8x+21+45+90=180 | | (x-8)-(x-9)=0 | | 2-3x+36+46=180 | | 7–x=4 | | x/3x+1=x+2/7x | | -x-5+99+37=180 | | 2x–18=36 | | 2x–18=36} | | 1/3^x=20 | | x+4x=90° | | 5x+48=3(4x-3)+8 | | 5x+15=3(x+1) | | -5x-19=-64 | | 3x+46=2(5x-2)-6 | | 32=4(4x+4) | | 20=5(4x-2)+10 | | 2x+12=2(2x+3)-4 | | 3a–24=72 | | 6m-7=43 | | -3x+47=2(5x+1)-7 | | 9x+21=7x+11 | | 9x²=16 | | 4x+13=3(x+5) | | 4(x+3)-6=-x-34 | | 3(2x-3)-4=-19 | | 2(4x+3)+3=-x+27 | | -12x+26=-6x+68 |