90-(1/2x+14)=2x-50

Simple and best practice solution for 90-(1/2x+14)=2x-50 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 90-(1/2x+14)=2x-50 equation:



90-(1/2x+14)=2x-50
We move all terms to the left:
90-(1/2x+14)-(2x-50)=0
Domain of the equation: 2x+14)!=0
x∈R
We get rid of parentheses
-1/2x-2x-14+50+90=0
We multiply all the terms by the denominator
-2x*2x-14*2x+50*2x+90*2x-1=0
Wy multiply elements
-4x^2-28x+100x+180x-1=0
We add all the numbers together, and all the variables
-4x^2+252x-1=0
a = -4; b = 252; c = -1;
Δ = b2-4ac
Δ = 2522-4·(-4)·(-1)
Δ = 63488
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{63488}=\sqrt{1024*62}=\sqrt{1024}*\sqrt{62}=32\sqrt{62}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(252)-32\sqrt{62}}{2*-4}=\frac{-252-32\sqrt{62}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(252)+32\sqrt{62}}{2*-4}=\frac{-252+32\sqrt{62}}{-8} $

See similar equations:

| z/10+6=8 | | (3x+2)*2-6x=14 | | 3x-6+x=2x-2-x | | 2b-7,5=8,5+b | | 8k+20=60 | | -3+a=3,5a-8 | | 5(x+2)x=3x5 | | 10^(2x)=10 | | 7s+20=195 | | 6x+2=10+3x | | 14x-(3x+2)=11-(x-5)+18 | | -7x-13=-4x-31 | | 14x+2-3x+6x=17(x+2)-15 | | (3x6-12=) | | 19-4(3+x)=14+3x | | 2-7/5x=-2/5x-4 | | 2(2x+6)=2(3x-5) | | 3x-1=5+3 | | -2=6/7(p) | | 9x-(2+4x)+(6-2x)=2x+11 | | x+x*3+x+8=53 | | x-2=2(3x-1) | | -6x^2+36x+0.26=0 | | 600x-250=-130x+280 | | 5x3=2x+5 | | 6(p-2)=8(p+5 | | 8x+11=3x+66 | | 600x-250=-130x-150 | | 8x^2+136x+578=0 | | 8x^2+136+578=0 | | 4x+3=7x+10,5 | | 7x-15=5x-17 |

Equations solver categories