If it's not what You are looking for type in the equation solver your own equation and let us solve it.
900=1500r^2
We move all terms to the left:
900-(1500r^2)=0
a = -1500; b = 0; c = +900;
Δ = b2-4ac
Δ = 02-4·(-1500)·900
Δ = 5400000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5400000}=\sqrt{360000*15}=\sqrt{360000}*\sqrt{15}=600\sqrt{15}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-600\sqrt{15}}{2*-1500}=\frac{0-600\sqrt{15}}{-3000} =-\frac{600\sqrt{15}}{-3000} =-\frac{\sqrt{15}}{-5} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+600\sqrt{15}}{2*-1500}=\frac{0+600\sqrt{15}}{-3000} =\frac{600\sqrt{15}}{-3000} =\frac{\sqrt{15}}{-5} $
| 6/x=39/52= | | 8k(k+4)=6k-15 | | Q=-0.8p+12.8 | | -2(-9u+4)-7u=3(u-5)-3 | | 7x-1+4x+5=90 | | 9y-5+13=3y+4y | | 2x-10+3x=-70 | | 2(9x-7)-10x=12 | | 5x-3=9x+7 | | 3(-1-2r)+3r=5r-7(6+r) | | 5023y+50+27y=50y+5023 | | 13y=35+6y | | 10x^2-20x-36=0 | | 5023y+50+27y=50y+5023, | | 5a-7=9a+13 | | 0.5x-0.3(-19)=2.7 | | 4/3x=4(x+1) | | -3u/12+1/4=-7/3 | | -4/3r+2r=1/2r+1/2 | | 4x2-6+10=0 | | 5a-4a(3a+7)=-21 | | 9=t^2-8t | | -c+1=9 | | 2(4x+1)=7x | | 9=-3/2v | | 10=19-3w | | 9(m)=5m+17 | | 2/3x-10=-13 | | 4x+108=160 | | 4-3x=3x-4-8x | | -2(x-2/3)=-11/6-4/3x | | 30y-12=12+2y |