If it's not what You are looking for type in the equation solver your own equation and let us solve it.
936=(2x-4)(x+8)
We move all terms to the left:
936-((2x-4)(x+8))=0
We multiply parentheses ..
-((+2x^2+16x-4x-32))+936=0
We calculate terms in parentheses: -((+2x^2+16x-4x-32)), so:We get rid of parentheses
(+2x^2+16x-4x-32)
We get rid of parentheses
2x^2+16x-4x-32
We add all the numbers together, and all the variables
2x^2+12x-32
Back to the equation:
-(2x^2+12x-32)
-2x^2-12x+32+936=0
We add all the numbers together, and all the variables
-2x^2-12x+968=0
a = -2; b = -12; c = +968;
Δ = b2-4ac
Δ = -122-4·(-2)·968
Δ = 7888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7888}=\sqrt{16*493}=\sqrt{16}*\sqrt{493}=4\sqrt{493}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{493}}{2*-2}=\frac{12-4\sqrt{493}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{493}}{2*-2}=\frac{12+4\sqrt{493}}{-4} $
| 6y+7=2y+43 | | 7-6b+10=-10-3b | | 1/7x=0.25x-2.75 | | 8(3-6n)=264 | | 12n=3+(2(n+1)) | | -24=-18t | | -8-6-3b-3=b+7 | | (2a+2)÷116=38 | | 6x+10=9x+50 | | x1/2+3/4= | | 6^(x-7)=94 | | 3x(9)=9(x+2) | | 7x-15/6=-6 | | 8(k=3)=12k-4 | | 2/3y-0.6=4.4 | | 1/5.y=8 | | -3n-1=-9-2n | | 10+10^2=x | | 2(-3x+7)=62 | | 12x^2-6x+7=0 | | 3/5y=0.7=5.7 | | 5u/3=-10 | | −1/5(n−3)=1/5(n−3/4) | | 2/3(2p-1)=10 | | 6(-2+3x)=150 | | 7n^2+8n+8=0 | | 2+4x=16+2x | | 1/6c+0.75=3.75 | | 1/6c+0.74=3.75 | | -3(6x-3)=153 | | Y=-4m-11 | | 1/4w-0.3=4.6 |