93=(x+19)(3x+5)

Simple and best practice solution for 93=(x+19)(3x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 93=(x+19)(3x+5) equation:


Simplifying
93 = (x + 19)(3x + 5)

Reorder the terms:
93 = (19 + x)(3x + 5)

Reorder the terms:
93 = (19 + x)(5 + 3x)

Multiply (19 + x) * (5 + 3x)
93 = (19(5 + 3x) + x(5 + 3x))
93 = ((5 * 19 + 3x * 19) + x(5 + 3x))
93 = ((95 + 57x) + x(5 + 3x))
93 = (95 + 57x + (5 * x + 3x * x))
93 = (95 + 57x + (5x + 3x2))

Combine like terms: 57x + 5x = 62x
93 = (95 + 62x + 3x2)

Solving
93 = 95 + 62x + 3x2

Solving for variable 'x'.

Combine like terms: 93 + -95 = -2
-2 + -62x + -3x2 = 95 + 62x + 3x2 + -95 + -62x + -3x2

Reorder the terms:
-2 + -62x + -3x2 = 95 + -95 + 62x + -62x + 3x2 + -3x2

Combine like terms: 95 + -95 = 0
-2 + -62x + -3x2 = 0 + 62x + -62x + 3x2 + -3x2
-2 + -62x + -3x2 = 62x + -62x + 3x2 + -3x2

Combine like terms: 62x + -62x = 0
-2 + -62x + -3x2 = 0 + 3x2 + -3x2
-2 + -62x + -3x2 = 3x2 + -3x2

Combine like terms: 3x2 + -3x2 = 0
-2 + -62x + -3x2 = 0

Factor out the Greatest Common Factor (GCF), '-1'.
-1(2 + 62x + 3x2) = 0

Ignore the factor -1.

Subproblem 1

Set the factor '(2 + 62x + 3x2)' equal to zero and attempt to solve: Simplifying 2 + 62x + 3x2 = 0 Solving 2 + 62x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 0.6666666667 + 20.66666667x + x2 = 0 Move the constant term to the right: Add '-0.6666666667' to each side of the equation. 0.6666666667 + 20.66666667x + -0.6666666667 + x2 = 0 + -0.6666666667 Reorder the terms: 0.6666666667 + -0.6666666667 + 20.66666667x + x2 = 0 + -0.6666666667 Combine like terms: 0.6666666667 + -0.6666666667 = 0.0000000000 0.0000000000 + 20.66666667x + x2 = 0 + -0.6666666667 20.66666667x + x2 = 0 + -0.6666666667 Combine like terms: 0 + -0.6666666667 = -0.6666666667 20.66666667x + x2 = -0.6666666667 The x term is 20.66666667x. Take half its coefficient (10.33333334). Square it (106.7777779) and add it to both sides. Add '106.7777779' to each side of the equation. 20.66666667x + 106.7777779 + x2 = -0.6666666667 + 106.7777779 Reorder the terms: 106.7777779 + 20.66666667x + x2 = -0.6666666667 + 106.7777779 Combine like terms: -0.6666666667 + 106.7777779 = 106.1111112333 106.7777779 + 20.66666667x + x2 = 106.1111112333 Factor a perfect square on the left side: (x + 10.33333334)(x + 10.33333334) = 106.1111112333 Calculate the square root of the right side: 10.301024766 Break this problem into two subproblems by setting (x + 10.33333334) equal to 10.301024766 and -10.301024766.

Subproblem 1

x + 10.33333334 = 10.301024766 Simplifying x + 10.33333334 = 10.301024766 Reorder the terms: 10.33333334 + x = 10.301024766 Solving 10.33333334 + x = 10.301024766 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-10.33333334' to each side of the equation. 10.33333334 + -10.33333334 + x = 10.301024766 + -10.33333334 Combine like terms: 10.33333334 + -10.33333334 = 0.00000000 0.00000000 + x = 10.301024766 + -10.33333334 x = 10.301024766 + -10.33333334 Combine like terms: 10.301024766 + -10.33333334 = -0.032308574 x = -0.032308574 Simplifying x = -0.032308574

Subproblem 2

x + 10.33333334 = -10.301024766 Simplifying x + 10.33333334 = -10.301024766 Reorder the terms: 10.33333334 + x = -10.301024766 Solving 10.33333334 + x = -10.301024766 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-10.33333334' to each side of the equation. 10.33333334 + -10.33333334 + x = -10.301024766 + -10.33333334 Combine like terms: 10.33333334 + -10.33333334 = 0.00000000 0.00000000 + x = -10.301024766 + -10.33333334 x = -10.301024766 + -10.33333334 Combine like terms: -10.301024766 + -10.33333334 = -20.634358106 x = -20.634358106 Simplifying x = -20.634358106

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.032308574, -20.634358106}

Solution

x = {-0.032308574, -20.634358106}

See similar equations:

| m^3-m^2n-mn^2+n^3=o | | (4z+1)(4+z)=0 | | -16x^2+175x-85=0 | | -2(x+7)-9=5x+12 | | -16x^2+175-85=0 | | 4x+8-3=4x+29 | | x/62+89=94 | | 6n-13=2n+51 | | y=3x^2-9x+7 | | 7a^2+56a+84=0 | | 4x-11=36 | | 220=2w+2w(2w-40) | | ln(x-3)=0.2x | | 0.36+0.04= | | x+2y=31 | | d(t)=16t^2-bt+20 | | 2x^2+4=246 | | 380=2w+2(w+20) | | 2x-y=-40 | | 58-10+2w=58 | | 3(n+5)=12 | | 3(2x+5)-2(x+1)=0 | | 5s^4-13s^3-6s^2=0 | | ln(9x+2)=9 | | 4x-7=5x+11 | | 16t-1156=0 | | 6x+8x-20=40-6x | | 4lnx=-8 | | x^6+x^2+1=69 | | x^6+x^2-68=0 | | y+1.2+1.2z= | | 3xsquared+2x-6=0 |

Equations solver categories