If it's not what You are looking for type in the equation solver your own equation and let us solve it.
94d^2+60d=0
a = 94; b = 60; c = 0;
Δ = b2-4ac
Δ = 602-4·94·0
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-60}{2*94}=\frac{-120}{188} =-30/47 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+60}{2*94}=\frac{0}{188} =0 $
| -3x+15=2x–10 | | 2x+2(x+9)=62 | | 50b=15 | | 27.x-1=80 | | 30x=72 | | 10x-4=336 | | -12.5+x=-18.25 | | 60.x+50=350 | | -12.5+x=18.25 | | 9/x-18=-17 | | 7x+2=4x=8 | | 1.1x=8.58 | | 25.x+10=110 | | -e/6=4 | | x+x+9=62 | | -d/5=7 | | 11x-2x+255=345 | | 150+60x-3x^2=0 | | x(60-3x)=150 | | 2x+2x+9=62 | | 3x*x−14x+8=0 | | 13.x-9=30 | | w/2=-43 | | x2*x−9x+20=0 | | 6.x-4=50 | | -9(x+8)(-9)=-126 | | x*x−9x+20=0 | | -9(x+8)(0)=-126 | | 5(3x+2)=x+9x+2(x-3) | | -9(x+8)(8)=-126 | | y/2+12=21 | | -9(x+8)(6)=-126 |