950=-16t2+1700

Simple and best practice solution for 950=-16t2+1700 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 950=-16t2+1700 equation:



950=-16t^2+1700
We move all terms to the left:
950-(-16t^2+1700)=0
We get rid of parentheses
16t^2-1700+950=0
We add all the numbers together, and all the variables
16t^2-750=0
a = 16; b = 0; c = -750;
Δ = b2-4ac
Δ = 02-4·16·(-750)
Δ = 48000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48000}=\sqrt{1600*30}=\sqrt{1600}*\sqrt{30}=40\sqrt{30}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{30}}{2*16}=\frac{0-40\sqrt{30}}{32} =-\frac{40\sqrt{30}}{32} =-\frac{5\sqrt{30}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{30}}{2*16}=\frac{0+40\sqrt{30}}{32} =\frac{40\sqrt{30}}{32} =\frac{5\sqrt{30}}{4} $

See similar equations:

| x+2.33=5.86 | | 24-x=4x+12 | | x+2.33=76 | | x+2.23=5.76 | | 0=-335x^2+4020x | | 0.125*n=1 | | 8a+16=-32 | | 2x+42x=36 | | x+5=50−2x | | 7y–5=4y+7 | | 34x+86=34x+112 | | a=15+8 | | 56x+34=56x+72 | | 1,1x=2,3x | | 2(x+1)-x+1=x+3 | | 3x-12=-4x+16 | | 10h-6h=24 | | 5^2n=125 | | (n+8)+n=-8n+2(4n-4) | | -1={5+x) | | 0=4.9^2+30t+5 | | -1={5+x)(6} | | (3x+7)(3x+7)=2.5 | | 2x31=2x-31 | | 11−5x+3x+4x=18* | | 2x+5=15-5 | | 5x=2*35 | | 6x+3+8x+7=52 | | -7x+8=-5x+22 | | 2x–7=x+3 | | F(x)=6x²-5-6 | | 8n–20=4n+8 |

Equations solver categories