98=(2*98/h)*h

Simple and best practice solution for 98=(2*98/h)*h equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 98=(2*98/h)*h equation:



98=(2*98/h)*h
We move all terms to the left:
98-((2*98/h)*h)=0
Domain of the equation: h)*h)!=0
h!=0/1
h!=0
h∈R
We add all the numbers together, and all the variables
-((+2*98/h)*h)+98=0
We multiply all the terms by the denominator
-((+2*98+98*h)*h)=0
We calculate terms in parentheses: -((+2*98+98*h)*h), so:
(+2*98+98*h)*h
We add all the numbers together, and all the variables
(98h+196)*h
We multiply parentheses
98h^2+196h
Back to the equation:
-(98h^2+196h)
We get rid of parentheses
-98h^2-196h=0
a = -98; b = -196; c = 0;
Δ = b2-4ac
Δ = -1962-4·(-98)·0
Δ = 38416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{38416}=196$
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-196)-196}{2*-98}=\frac{0}{-196} =0 $
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-196)+196}{2*-98}=\frac{392}{-196} =-2 $

See similar equations:

| x+4.3=9.9 | | -16=x/6 | | 3(x+2)=7(9x-6)+10 | | 4(x-1)=4x+1 | | A=(2A/h)*h | | 4(x+1)=4x-1 | | 20=5x-1 | | -(3x-(2x+5))=-4-(3(2x-4)-3x | | -(3x0(2x+5))=-4-(3(2x-4)-3x | | b−316=516. | | 1+19=-4(5x-5) | | 4.7x=5.17 | | (5x+17)=180 | | H(t)=-4.9t^2+24t+15 | | 15+15=-3(2x-10) | | x+500=2800 | | 2.3x=16.33 | | 7+|2x|=9 | | 3(2x+1)=3(x–1)-2(x–3) | | 5x-8x-15=-3x+7-15 | | |3a-3|=9 | | 62.5+0.5y=60 | | |s|=16 | | 6(2n+4)=6(4n+4)+7 | | 2(b+4)=-(3b+2) | | 3x-4=-(x-7) | | 17=2+5c | | 25x^2-20x^2=0 | | x/(14-x)=4/3 | | -2(5t-5)+5t=2t-9 | | 5p=7-5p=-7(p-3) | | a=2,225,000/(1.08)5 |

Equations solver categories