999=(x/2)(1+x)

Simple and best practice solution for 999=(x/2)(1+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 999=(x/2)(1+x) equation:



999=(x/2)(1+x)
We move all terms to the left:
999-((x/2)(1+x))=0
Domain of the equation: 2)(1+x))!=0
x∈R
We add all the numbers together, and all the variables
-((+x/2)(x+1))+999=0
We multiply parentheses ..
-((+x^2+x))+999=0
We calculate terms in parentheses: -((+x^2+x)), so:
(+x^2+x)
We get rid of parentheses
x^2+x
Back to the equation:
-(x^2+x)
We get rid of parentheses
-x^2-x+999=0
We add all the numbers together, and all the variables
-1x^2-1x+999=0
a = -1; b = -1; c = +999;
Δ = b2-4ac
Δ = -12-4·(-1)·999
Δ = 3997
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{3997}}{2*-1}=\frac{1-\sqrt{3997}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{3997}}{2*-1}=\frac{1+\sqrt{3997}}{-2} $

See similar equations:

| 15x-11=12x+16 | | 24x2=20x= | | x^2+6x+14=-3 | | 4/7x=16/5 | | 1=0.02x | | 3/x-12=53 | | 4n2=196 | | -3n=-6n+4n | | 12=9v-3 | | B+3=2b/5-2 | | 5x÷3=18 | | 40-4x=2×3x-10 | | 17x-8x=27 | | 2(x+8)+14=28 | | 8+5a/2=14-a | | 13/x+5=4 | | 2(d+3)=3d+8 | | |3a+2|-2=4a+1 | | 0+1=5(x-4) | | 2d+4=9d-7 | | 9÷2+p=3p-3÷2 | | 1200+9t=25 | | 2x-8+2x-6=14 | | -3(x+3)-2=-20 | | 31p8−8p8= | | 2(3x-1)=5-(2x+3) | | 7(x+1)=2-2(5-x) | | -5k+9=-4k | | 1.01^(0.01*x)=x | | 3x+15=x-10 | | 72/13=k | | -4|8–5n|=13 |

Equations solver categories