If it's not what You are looking for type in the equation solver your own equation and let us solve it.
99x^2+149x+56=0
a = 99; b = 149; c = +56;
Δ = b2-4ac
Δ = 1492-4·99·56
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(149)-5}{2*99}=\frac{-154}{198} =-7/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(149)+5}{2*99}=\frac{-144}{198} =-8/11 $
| 174-w=92 | | 102=16x | | 4(3a+6)−3(2a+3)=25 | | -u+134=191 | | 4x+24=5-2x | | 9x+1=5x–7é/* | | -(-3+2*x)=x+4 | | -(-3+2*x=x+4. | | m-29/13=25 | | x=6+4/9 | | x-11=28x−11=28 | | 77+(5x+3)=180 | | 5(-3x+3)-4=49 | | 19/4-37/2a=-1/4a+3/2 | | 6x-2x+4=-x+24* | | -x+7=-2x+10* | | x-0,25x=15 | | 3+2*x=x+4 | | 14-a=21 | | 5x²-15=0 | | 20+16(x-20)=18(x+17) | | 5x+5x+3x-10-5=180 | | 10x-15+5x+45=180 | | -5(x+1)-x+1=-18 | | -3x+14=-5x+16* | | 13+r=7+6r | | 3x+3=5-2x | | 12-2x=-4x+6 | | 27=(3x)/(7)+6 | | (x+5)*(x+2)=54 | | 2x-45=x-22 | | 3(1-3g)=g-7 |