If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9k+5k(2)=38
We move all terms to the left:
9k+5k(2)-(38)=0
We add all the numbers together, and all the variables
5k^2+9k-38=0
a = 5; b = 9; c = -38;
Δ = b2-4ac
Δ = 92-4·5·(-38)
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-29}{2*5}=\frac{-38}{10} =-3+4/5 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+29}{2*5}=\frac{20}{10} =2 $
| 2t=7t-3(t-1) | | q+q/3=8 | | p/3+p/4=7 | | 4n-5(3n-5)=25 | | 2(m-5)-(m-7)=22 | | 2(2x-2)=3(5-x)* | | (2m-3)+5m=4m | | 5x-2(7x-3)=x-1 | | Z=x-32.2/16.9 | | 2v−2=8v= | | 6x-16=52 | | 60x+10=25 | | 14=-10+12y | | (x+x)*5=15 | | X+x(.075)=360 | | 23x+5=51 | | 2g-3-g=10+7g+5 | | 2w2+3w−4=0 | | p2+5p+4=0 | | 3t+12=-6 | | 8+2j-2=j-2-3j | | x^2/49=64 | | 15=x+6-5x+1 | | 3-9×12=y | | (x+1)÷2=-7 | | 4x/7-0.6=36 | | 16+7r-5+r=11r-3-3r | | 3(x+8)=3x | | (0.02)x=21000 | | p-6-5p+10p=9p-12+3p | | -19+x=21 | | 7e-10+2e-8=14e-5+8e |