If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9k^2+45k=0
a = 9; b = 45; c = 0;
Δ = b2-4ac
Δ = 452-4·9·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-45}{2*9}=\frac{-90}{18} =-5 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+45}{2*9}=\frac{0}{18} =0 $
| 2n-7=7n | | 6p=0.6(5p+5) | | 3/4=1/4+p/5 | | 5+.5n=2 | | 5(-2)+3y=-10 | | 2+-2d=18 | | -32=-2(p-80) | | E(a-3)=2(a+4) | | 27-3b=18 | | 88=2(k-32) | | Kx9=81 | | 69x=69 | | 2(3x+2)+2(4x-2)=140 | | 5b+24=74 | | -21-w/4=30 | | 2+4+4*11=x | | 45x=21 | | 25y+30y=810 | | X/x-4-6/4-x=x | | -2(u+-11)=6 | | r-9=8r-5 | | 7x-5=28 | | 4(x+7)=6(x+3) | | 7r^2-53r-117=0 | | 4x+3=21-5x | | -3(b+99)=-3 | | 6-7x=6x-8x+11 | | 48y-36=0 | | -2(u+(-11))=6 | | -2(6a-1)=-53(3a+15)+ | | 1/2(-16x+12)=0 | | 4.7p+8.7p-2.6p=93.9 |