If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9k^2-21k+10=0
a = 9; b = -21; c = +10;
Δ = b2-4ac
Δ = -212-4·9·10
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-9}{2*9}=\frac{12}{18} =2/3 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+9}{2*9}=\frac{30}{18} =1+2/3 $
| Y-7=-5(x-2) | | v/24-4=5 | | 9=u/2 | | 29+30p=509 | | 17x=18x-5 | | 5x-1+3x+1=8x+2 | | 6z+87=975 | | 5x-1+3x+1=8x | | 118-9v=1 | | 9k2-15k+10=0 | | 6x-11=4x+11 | | Y-0=1/4(x-0) | | p/2-8=2 | | 2(3p–4)=10 | | r/9+73=82 | | .2y-y=-100 | | .2y-y=100 | | 2x-25/15=2x-11/9 | | Y-0=-1/4(x-0) | | 2x+3+4x=40 | | -7s+4=80 | | b/6-39=-30 | | |5x|+-22=14 | | x+1/7=2x+2/7 | | 24-4z=4 | | 0.6p+45=22.5 | | n/5-4=1 | | -2(r+3)=-393 | | 12=6v-4v | | 3-2(x+3)=-7x-13 | | -3(4x-3)=3+6 | | 5y/6=10 |