If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9k^2=25
We move all terms to the left:
9k^2-(25)=0
a = 9; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·9·(-25)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30}{2*9}=\frac{-30}{18} =-1+2/3 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30}{2*9}=\frac{30}{18} =1+2/3 $
| 1/5x+5=19+1/2x | | 2/3x+6=1/3×-132 | | 4^2(x+5)-11=245 | | 7h-5÷4=11 | | 2/3x+6=1/3×-13 | | 49+6y=13y | | 11x/300=1 | | 1=50/x+60/x | | 814=22(v-923) | | 18x+66=105 | | (3x+2)=(x+314) | | 23x+66=105 | | 3x4-7x2=0 | | 21(y-946)=168 | | 4^8x-2=5^x | | 5x+66=105 | | 338/g=13 | | -3x^2-15x+4=0 | | n/52=n/13 | | -16t^2+96t+16=160 | | y/11=5/13 | | 0.49m=3.92 | | k+1.5=4+1/2k | | 3(9x+4)=147 | | 3(t-12)=12 | | 8.25y=-107.25 | | -19+3x+10=0 | | -16=-2(1-8n)-6(4+n) | | 7h-5^4=11 | | 4(x^2-112x+292)=0 | | -87=-9+6m | | -16x^2+144x-224=0 |