If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9n^2+18n-7=0
a = 9; b = 18; c = -7;
Δ = b2-4ac
Δ = 182-4·9·(-7)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-24}{2*9}=\frac{-42}{18} =-2+1/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+24}{2*9}=\frac{6}{18} =1/3 $
| x^2+1=3x^2-13x2+1=3x2−13 | | -4x+4=76+4x | | –2x–3=–19 | | n2+14n-51=3 | | -4x+4=76=+4x | | -7x-3=-24 | | 9v-5=0 | | 45=−4c+41 | | 11+0.8=x | | -8+7x=3x+36 | | n2+6n-94=-8 | | k2+2k-54=-6 | | a2+18a+26=-9 | | 1+x=5x-47 | | 5x+-7=-13 | | p-5/2=-4/2 | | 67w=603 | | 5-2m=2.4 | | n2-16n+18=-10 | | 73.50=15/x | | 31p=1240 | | 8=3/w+1 | | 3x-10=26+6x | | 19=x+16 | | 19.1+0.8x=28.7 | | X+6=-3x+54 | | 4-2p-2=-10 | | 6x-5-52x=7+1 | | m=56/8 | | (x+3)^2−1=35 | | 5(18x-8)=6x-19 | | 5x(-4)=2x+4 |