If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9n^2+3n-5700=0
a = 9; b = 3; c = -5700;
Δ = b2-4ac
Δ = 32-4·9·(-5700)
Δ = 205209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{205209}=453$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-453}{2*9}=\frac{-456}{18} =-25+1/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+453}{2*9}=\frac{450}{18} =25 $
| 35+9m=47 | | -18–4v=-2v–2 | | (X-0)^2+(y-3)^2=3^2 | | .5(x)+.2(9-x)=3.45 | | 4x-2(7x+6)=-4 | | A(2,5)m=2 | | 3x+8−7(x+1)=5x+6 | | 2x+5=(x-3) | | 129.6+9/5x=288-4x | | X+2+12=3x+4 | | X=18y-62 | | 10b+1.5÷6=8.8 | | -6(3x-7)+36=24 | | -0.10(10)+0.10x=0.05(x-8) | | 4y-3.8=8.2 | | 3a-3.25=5.75 | | .03x-0.08(10+x)=0 | | 580-A)x4=1588 | | 5d-8=2d+1 | | (x+1)+x=-39 | | 0.16(y-3)+0.02y=0.14y-0.5 | | 5b-6=7 | | 4x=1÷2 | | 32n^2-24n=0 | | (x+3)^2=x+3 | | 5b-6÷2=7 | | -x^2-5x+7=0 | | (X+3)^2=(x+3) | | 3l/2=1/2 | | 23+4j+2j-13=11j+18-5j-8 | | 8y+18=2 | | 4x-7=3×+6 |