If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9n^2-63n=0
a = 9; b = -63; c = 0;
Δ = b2-4ac
Δ = -632-4·9·0
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3969}=63$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-63)-63}{2*9}=\frac{0}{18} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-63)+63}{2*9}=\frac{126}{18} =7 $
| -6h+17=41 | | 1/(y-2)(y-3)=-2+1/y-3 | | 5(1+2m)=1.2(8+20m) | | -3(-7y+8)-y=4(y-1)-6 | | 2=11+3(m+3 | | 3x^2+24x-42=0 | | X2-3x-18=0 | | 7x2=53x | | x/2-10=x/3+40 | | 2=+3(m+3) | | 5(6n+7)+4=-81 | | 8c-21=35 | | 5q+q=9 | | 5(x-1)-20=10 | | (x-8)/3=(x-)/15 | | 8t-24=-3+t | | 3c2+19c+28=0 | | 5=2.5*0.3+x*120 | | 0.5(-8p+1)=-4 | | 3(x+4)+3=30 | | 42+5y-4=14y-11-2y | | -4(-8-2x)=88 | | (1/25)(20-x)=(4/25x)-3/5 | | 2b×6b=9 | | 3x+2x+10+2x+5+2x-15=360 | | 4n2+8n=0 | | -2+8x-2=12 | | 3x-5(x-2)=-3+5x-15 | | 3x+2x+10+2x5+2x-15=360 | | x-11-4x=16+4x | | x3+4x2+-11x+-30=0 | | 4r+10=38 |