If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9q(q+7)=0
We multiply parentheses
9q^2+63q=0
a = 9; b = 63; c = 0;
Δ = b2-4ac
Δ = 632-4·9·0
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3969}=63$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-63}{2*9}=\frac{-126}{18} =-7 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+63}{2*9}=\frac{0}{18} =0 $
| (7s-1)(s+6)=0 | | 20/7=x/49 | | (u-8)(u+9)=0 | | 30-3x=15-2x | | 3x=13/11 | | 4/x+2=4 | | 33.33x+3=4-x | | 2x/3-5/24=x | | 2x-21/3=2/3-3x | | 4(x-3)-30=2 | | (2-x)(4+x)=0 | | 3x2+x–2=0 | | 1/3(3x+9)=x | | (h-1)(h+2)=0 | | 4s-2(10+s)=5s-(100+2s) | | (h+1)(h-1)=0 | | v(7v-6)=0 | | 9-2y=21 | | -2/3x+4(3-x)=26 | | 5/x+3-x/3-x=18/x^2-9 | | (8x+63)=5x | | 9/4x-1/9=6x | | 40=x^2-14x | | (c+9)(c+5)=0 | | 0.7(10x+19)=3.7(0.2x+5) | | 6(x+5)=-3(x+1) | | (c+9)(c+5=0 | | 23/10(p-6)+23/10p=230 | | 30=(x-3)(x-2)x | | 9w-2w=4w+38 | | (p+8)(7p+1)=0 | | 0.3/0.2=18/x |