If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9q^2+24q+16=0
a = 9; b = 24; c = +16;
Δ = b2-4ac
Δ = 242-4·9·16
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$q=\frac{-b}{2a}=\frac{-24}{18}=-1+1/3$
| -105.6+9.8x=-37 | | 3+(x+5)=18-(4x-15) | | 4y+18=106 | | h-8=0; | | 20(63-22x)=10x-36 | | 11.25x=38.75+3.5x | | 10^(x)-30(10^(-x))=7 | | 50x+20=200 | | Y=3x+.85 | | 38.75+3.5x=73.75 | | x-35=145 | | 5x-(-35)=50 | | 2(63-22x)=x-36 | | 43x+3+46x-1=360 | | 20(63-22x)=x-36 | | w-2.8=9.5 | | w-2.8=9.5 | | 0.4x+0.7-0.6=0.5-0.4x+0.4 | | 6(x+24)=32 | | x+x+1+x+2=537 | | 4+4=8+6q | | -5+7x+14x-6=180 | | 15-6x=18x+6 | | 6m+2=-7m-76 | | 0.6m+0.2=-0.7m-7.6 | | 0=7x-20 | | 2x+65+x+105+2x+95=360 | | r=2.1,2.4,2.6,2.8 | | -3.6=w-9.4 | | 6x-4+11x-3=180 | | 30/x=13/5 | | 5+4x-7=4x+2 |