If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9q^2+48q+64=0
a = 9; b = 48; c = +64;
Δ = b2-4ac
Δ = 482-4·9·64
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$q=\frac{-b}{2a}=\frac{-48}{18}=-2+2/3$
| (3x+2)+(3x+2)=8x−2 | | |-1+n|=8 | | X-10=-3x+6 | | -6x+12=2(6-8x) | | √x+5=3 | | 2x+0,4x=2943 | | 7/3+3m/7=64/21 | | k/2+1-1K=2k | | 11x-12+3x+18=x | | 3k+17-9k=20 | | m÷10=16 | | 7x-2(x-3)=5(x+1)+4 | | 7(x-7)+3=7(x+5) | | 3a^2+2a+1=0 | | 12a-7=4a+9 | | 4-6a+4a=-1-5(7-2a | | r+3=-6,1/2 | | |9m|=81 | | 6(x+2)+6=6x+6 | | 5x-27/3=4 | | 3n-3=4n+1= | | 200=x-9 | | 5x^2-5x+26=0 | | 5n=n+108 | | 6=10x-4x | | 11x-12+3x+18=0 | | 2(x+7)+3x-6=182 | | -3w+7=-4 | | 5x+3=-1+3x | | 4x-(7+2x)=21 | | 3=2|1/4s-5|+3 | | -6x+12=2(6-8×) |