If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9t^2+17t-2=0
a = 9; b = 17; c = -2;
Δ = b2-4ac
Δ = 172-4·9·(-2)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-19}{2*9}=\frac{-36}{18} =-2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+19}{2*9}=\frac{2}{18} =1/9 $
| 3/4u-1/4u+14=4 | | 40+16(2y-22)=-24 | | e+(e-6)-2=(-10) | | 3/2y-y-8=24 | | 48-20x=18 | | 2-1(3+4x)=11 | | 3u-7/5=-4/5u-1/2 | | 4x+23=6x-15 | | d/6+840+d/4=1.140 | | 8y=90-20 | | x64+x27+97=x | | 52-(3c+4)=2(c+6)+c | | 12x-2=38 | | 2-x=47 | | k-7k=3(-6k-8)+51-3k-6) | | 3.59+9.95(n)=33.44 | | 7x=6=76 | | 7x+8=57/ | | x^2-11x-3630=0 | | -12(x-12)=-9( | | 3(2x+4)=2(x-8) | | 4(k-5)-8k=-2(3k+1) | | 6(h+2)=21+3h | | 2(g+3)=7g+1 | | 13x-12=7x-5 | | y/4-6=11 | | -64=-9t+17 | | 6a-10=64 | | -3(x-15)=-72 | | -3(x-15)=72 | | h=-9+7 | | u=9+-1 |