If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9v^2+9v+1=0
a = 9; b = 9; c = +1;
Δ = b2-4ac
Δ = 92-4·9·1
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{5}}{2*9}=\frac{-9-3\sqrt{5}}{18} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{5}}{2*9}=\frac{-9+3\sqrt{5}}{18} $
| -16x+18=-16 | | −5(4x−3)−x+5= −190 | | -6(8q+2)=-5q-12 | | —1.6(2y+15)=-1.2(2y-10) | | -a+5+8=10 | | 1.25(x)=10.50 | | 31=7/x | | -2x+18-14x=-16 | | -0.55x+0.35x=5.2 | | 2=1.068^t | | Y=0.50x+13 | | -102=-3(-6n-8) | | -9=-7p-5+3p | | 1/4=c+1/4 | | 1/9(9x+3)=3x+4 | | 10=5-4p-p | | 2(3y+8=70 | | 0.6(-7.05+7x)=5.1x | | 117=-3(-4+7v) | | -9=5(x-7)+4x | | 13+p=71 | | -11=3x+8x | | 4(x+8)=52-2x | | w/7+5.1=-6.1 | | 3x=12x-56 | | -3.1+u/3=-10.6 | | 9y-5y-14=29.32 | | 5×+2x=49 | | -20=-8p+3p | | 4x-9x-11=-5x+5-11 | | -8-4n-6n=22 | | 0.79+1.19x=24x |