9x(x+1)=6(x+3)

Simple and best practice solution for 9x(x+1)=6(x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9x(x+1)=6(x+3) equation:



9x(x+1)=6(x+3)
We move all terms to the left:
9x(x+1)-(6(x+3))=0
We multiply parentheses
9x^2+9x-(6(x+3))=0
We calculate terms in parentheses: -(6(x+3)), so:
6(x+3)
We multiply parentheses
6x+18
Back to the equation:
-(6x+18)
We get rid of parentheses
9x^2+9x-6x-18=0
We add all the numbers together, and all the variables
9x^2+3x-18=0
a = 9; b = 3; c = -18;
Δ = b2-4ac
Δ = 32-4·9·(-18)
Δ = 657
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{657}=\sqrt{9*73}=\sqrt{9}*\sqrt{73}=3\sqrt{73}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{73}}{2*9}=\frac{-3-3\sqrt{73}}{18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{73}}{2*9}=\frac{-3+3\sqrt{73}}{18} $

See similar equations:

| t^2=3.125 | | 10x-25=3x+5 | | 16-3c-9,c=-6 | | -4-c=10+c | | 5q+6=8q | | X²+15x-16=0 | | -7u+10=-9u | | 7+6c=5c | | 3r-10=5r | | 2q-9=3q | | 0.08x=3000 | | 0.08x=6000 | | 128+16x=0 | | x+900=1300 | | Xx0.25+X=35.50 | | x+1500=1300 | | y=3/5(y-2/3y)+100 | | 300+6y=3900 | | 2x-23=6x+13 | | (2x+3)(3x-1)-x^2=5(x-1)^2 | | 4(x+7)=-x | | 5(x-4)=-2 | | (X+2)×(x+5)=437 | | 64z=0 | | -20x^2+112x+196=0 | | 3x=10.2 | | 4(2x+7)^2-36x^2=0 | | 2a÷13=2 | | 3x-6=x+32 | | 8x+3(2-4x)=5 | | y(y+4)=y^2+2y+6 | | 10=4-3(x+8) |

Equations solver categories