If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x+2=(3/4)(2x+11)
We move all terms to the left:
9x+2-((3/4)(2x+11))=0
Domain of the equation: 4)(2x+11))!=0We add all the numbers together, and all the variables
x∈R
9x-((+3/4)(2x+11))+2=0
We multiply parentheses ..
-((+6x^2+3/4*11))+9x+2=0
We multiply all the terms by the denominator
-((+6x^2+3+9x*4*11))+2*4*11))=0
We calculate terms in parentheses: -((+6x^2+3+9x*4*11)), so:We add all the numbers together, and all the variables
(+6x^2+3+9x*4*11)
We get rid of parentheses
6x^2+9x*4*11+3
Wy multiply elements
6x^2+396x*1+3
Wy multiply elements
6x^2+396x+3
Back to the equation:
-(6x^2+396x+3)
-(6x^2+396x+3)=0
We get rid of parentheses
-6x^2-396x-3=0
a = -6; b = -396; c = -3;
Δ = b2-4ac
Δ = -3962-4·(-6)·(-3)
Δ = 156744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156744}=\sqrt{36*4354}=\sqrt{36}*\sqrt{4354}=6\sqrt{4354}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-396)-6\sqrt{4354}}{2*-6}=\frac{396-6\sqrt{4354}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-396)+6\sqrt{4354}}{2*-6}=\frac{396+6\sqrt{4354}}{-12} $
| -2z=10-z | | 6378.1x=2981.1 | | 11x-86x=22 | | 6378.1x=3981.1 | | 4x-7+x+12=180 | | ((X+1)/2)+((x+5)/3)=5 | | 3/5x=1/7x+16 | | -2n+9=4n-9 | | (X+1)/2+(x+5)/3=5 | | x+12=4x-7 | | x/2x+1=16/40 | | 10k=-7+3k | | 2x+10=18+6x-12 | | 9+3m=-5+5m | | 2/5x=3/10+1/5x | | 4x-12=6x-14 | | 2/5x=3/10x+1/5x | | 7m^2+45m+18=0 | | 7+2(3−8x)=4−6(1+5x) | | 4x4+81=36x | | 2(1+6x)-(x-1)=80 | | 6x+10=8x+32 | | 4x2+81=36x | | 3x=14-4 | | 2x+2=7x+7 | | 8(-7a-4)-7(a-5)=6a+1+a+2 | | 2/3x-3=7/9x | | x+12-3=4+2 | | 2.5x+2/5=-6 | | H(x)=5x+20 | | 0.3y+2.4=0.1×+4 | | 8/3=-6/3x |