If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x+5x^2=2
We move all terms to the left:
9x+5x^2-(2)=0
a = 5; b = 9; c = -2;
Δ = b2-4ac
Δ = 92-4·5·(-2)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-11}{2*5}=\frac{-20}{10} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+11}{2*5}=\frac{2}{10} =1/5 $
| 0.4(2x+1/2=3(0.2x+(-2)-4 | | -2w-14=9(w-4) | | 2(x-5)+5=-5 | | |–6u|−4=2 | | -3(y-2)=-8y-9 | | 4-7v=4v+5(-2v+2 | | 10x+26=3x+5 | | 3y-10=5(y-4) | | x-(x*13/100)-280=3626,3 | | 2x-52=8 | | 15=4x–27 | | 14=3y-2 | | 3-(1)/(2)x+5-(4)/(3)x=-2 | | 3+x+6=7x+9-6x | | 23=−16+y | | –12x+x−6=–17 | | .2x+10=16 | | 7u+5(u+5)=1 | | x/4+16=41 | | x–3=7.5 | | 3(y-3)+2y=6 | | 1−u=19 | | 3m=-3+2m | | 2b+1=3b-4 | | 3-1/2x+5-4/3x=-2 | | -2v/5=-4 | | –10v+18=–8v−18 | | 15x−3=25x+5 | | (-4/9)x=5/3 | | 8(x+3)=8x+15+9 | | -3+1=x+9+-4x | | 7/3x=-49 |