If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x+9=(1/3)(3x+3)
We move all terms to the left:
9x+9-((1/3)(3x+3))=0
Domain of the equation: 3)(3x+3))!=0We add all the numbers together, and all the variables
x∈R
9x-((+1/3)(3x+3))+9=0
We multiply parentheses ..
-((+3x^2+1/3*3))+9x+9=0
We multiply all the terms by the denominator
-((+3x^2+1+9x*3*3))+9*3*3))=0
We calculate terms in parentheses: -((+3x^2+1+9x*3*3)), so:We add all the numbers together, and all the variables
(+3x^2+1+9x*3*3)
We get rid of parentheses
3x^2+9x*3*3+1
Wy multiply elements
3x^2+81x*3+1
Wy multiply elements
3x^2+243x+1
Back to the equation:
-(3x^2+243x+1)
-(3x^2+243x+1)=0
We get rid of parentheses
-3x^2-243x-1=0
a = -3; b = -243; c = -1;
Δ = b2-4ac
Δ = -2432-4·(-3)·(-1)
Δ = 59037
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-243)-\sqrt{59037}}{2*-3}=\frac{243-\sqrt{59037}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-243)+\sqrt{59037}}{2*-3}=\frac{243+\sqrt{59037}}{-6} $
| -4x+22=-3x+29 | | 3*2=1,4x | | 30.5h/12-25.5h/12=5 | | -x-68=-9x+36 | | 3*2=1,4c | | 3x=1,4 | | x²=255 | | 3.2=1,4x | | 2d+6=26 | | y4=14,641 | | x(x-0,5)(x+7)=0 | | 20w=196 | | 5m^2-120=0 | | 2(4x+1)-6(x-2)=x+18 | | -9=-5+r3 | | (216/x)=0.24 | | (9x-30)+5=16 | | a+a=59 | | 45^2+36^2=x^2 | | d=-54 | | 2b+3b+20=-15b | | -113=16x | | 3(2x-1)+12=4x=-3 | | -19x=-17- | | 5x^2+2x-242=0 | | 14-6a=7+a | | 3,14-x=0,03 | | 23n-16=-56n+2 | | 23+4n=2(1+4n)+1 | | -4(3p+1)=3-5p | | 5,-3=-15+2m | | 3(x+5)+4=1–2(x+6) |