9x-12=(5x+2)(2x-6)

Simple and best practice solution for 9x-12=(5x+2)(2x-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9x-12=(5x+2)(2x-6) equation:



9x-12=(5x+2)(2x-6)
We move all terms to the left:
9x-12-((5x+2)(2x-6))=0
We multiply parentheses ..
-((+10x^2-30x+4x-12))+9x-12=0
We calculate terms in parentheses: -((+10x^2-30x+4x-12)), so:
(+10x^2-30x+4x-12)
We get rid of parentheses
10x^2-30x+4x-12
We add all the numbers together, and all the variables
10x^2-26x-12
Back to the equation:
-(10x^2-26x-12)
We add all the numbers together, and all the variables
9x-(10x^2-26x-12)-12=0
We get rid of parentheses
-10x^2+9x+26x+12-12=0
We add all the numbers together, and all the variables
-10x^2+35x=0
a = -10; b = 35; c = 0;
Δ = b2-4ac
Δ = 352-4·(-10)·0
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1225}=35$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-35}{2*-10}=\frac{-70}{-20} =3+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+35}{2*-10}=\frac{0}{-20} =0 $

See similar equations:

| −2=6—7p | | 5-a=11+a | | -3m+1=28 | | 5+2(x-5)=3x-2 | | 7a-4=5a-14 | | -4+1x=3 | | 3/2y-y=4+1/24 | | -3(-2x+20)+8(x+12)=99 | | 3x-7=1/3(9x-15) | | 7.5+5.3x=55.2 | | 1.08(2t+2.50)+3=13.80​ | | 2x-4+x=x-8 | | 12+1/5(10x+5)=5 | | x/5=12/1 | | (x+11)^2=122 | | 5(c-8)-3(2c+12=-84 | | c(120000,0.006042,360)=(120000)(0.006042)(1.006042)^360/(1.006042)^360-1 | | z/2+1=2/3 | | -6/x-3=5 | | 5(-2+4b)=36-7b | | m/4+3=1 | | -6v+2(4v+3)=4(v-1)-8 | | -5(-2+46)=36-7b | | 4x-1.4=x | | 8x-20=3x-1(2) | | 3(2a+3)-4(39-6)=15 | | 42x-3=4 | | 4+4(4-6a)=5a-3(1+2a) | | -5(3x-7)=10 | | 4y=-3+1 | | 0=4/5x | | 1+4b=41 |

Equations solver categories