If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x-25=7(x+2)(5-3x)
We move all terms to the left:
9x-25-(7(x+2)(5-3x))=0
We add all the numbers together, and all the variables
9x-(7(x+2)(-3x+5))-25=0
We multiply parentheses ..
-(7(-3x^2+5x-6x+10))+9x-25=0
We calculate terms in parentheses: -(7(-3x^2+5x-6x+10)), so:We get rid of parentheses
7(-3x^2+5x-6x+10)
We multiply parentheses
-21x^2+35x-42x+70
We add all the numbers together, and all the variables
-21x^2-7x+70
Back to the equation:
-(-21x^2-7x+70)
21x^2+7x+9x-70-25=0
We add all the numbers together, and all the variables
21x^2+16x-95=0
a = 21; b = 16; c = -95;
Δ = b2-4ac
Δ = 162-4·21·(-95)
Δ = 8236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8236}=\sqrt{4*2059}=\sqrt{4}*\sqrt{2059}=2\sqrt{2059}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{2059}}{2*21}=\frac{-16-2\sqrt{2059}}{42} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{2059}}{2*21}=\frac{-16+2\sqrt{2059}}{42} $
| 4x+33=4x+5 | | -19v+6=-20v+15 | | 21-2x÷3=5 | | 9x^2-25=7(x+2)(5-3x) | | 24=9/3w | | 2|x-5|+2=6 | | (100/x)-10=40 | | 2(x)-100+3(x)+80=2680 | | 6k=7k | | -0.08a-8=0.2a | | 2(x)-100)+3(x)=8)=2680 | | 14-3x=6+5x | | 2(x+1)/5+1/3=7(x+4)/5 | | 0=30+19t-t^2 | | 226/gg=13 | | 6.5x-15.3=-2.3 | | 30=30+19t-t^2 | | 2x-x-x+4x-x=18 | | 13515mm=3 | | 2(x)-100+x+3(x)+80=2680 | | 3(4x-2)-2=6(3x+1)-14 | | 19+q25q=4 | | 5x/2+3/4=7x-1/4 | | x+x+2x=48x= | | b/8+11=-9 | | n+10=28 | | 3(4x+1)=2(6x-1)=13 | | 3511kk=3 | | -2m-4=8m= | | 5/x+3/4=7x-1/4 | | 8=2(y+7)-8y | | Z8z=64 |