If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+112x-444=0
a = 9; b = 112; c = -444;
Δ = b2-4ac
Δ = 1122-4·9·(-444)
Δ = 28528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28528}=\sqrt{16*1783}=\sqrt{16}*\sqrt{1783}=4\sqrt{1783}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(112)-4\sqrt{1783}}{2*9}=\frac{-112-4\sqrt{1783}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(112)+4\sqrt{1783}}{2*9}=\frac{-112+4\sqrt{1783}}{18} $
| 3y=2Z-2 | | 4(x+3)-7x=5(2-x)+18 | | 2*m/3=12 | | 3a+4=24= | | x+(x+7)-8=0 | | 9x=8413x= | | x+(x-3)+(x+8)=-25 | | 4y-(6-y)=3y-6 | | -5-3x-11x=-19 | | x+2-(2x+7)=5x-1 | | -(7p-3)=0 | | -p+8=3 | | -(7p-3)=135+15p | | 9h/4=27 | | 7m+4=4m+10 | | x/3+x/4-x/7=37 | | -7x=4-7 | | X2-34x+25=0 | | 7x-6+x=10 | | 5x+2-3x=26 | | 5+3r=-2-3(9+4r) | | 8x-4=5x+15 | | 4(x=3)-5(2x+1)=13 | | 5y+40=90 | | X*y=68 | | 4x+6+6x-10+7x+14=90 | | 16=r-5 | | 10k-8=7k+13 | | 6(x-+20)=4x | | 6x+30+8x-60=90 | | 0.5(x-0.4)/3.5-0.6(x-2.7)/4.2=x+6.1 | | 2+c/4=22 |