If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+12x+3=0
a = 9; b = 12; c = +3;
Δ = b2-4ac
Δ = 122-4·9·3
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-6}{2*9}=\frac{-18}{18} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+6}{2*9}=\frac{-6}{18} =-1/3 $
| 6(2-4x)+10x=-8+21-6x | | 42=6^9x | | X+9/8=7/4+x-3/5 | | 6c-24=108 | | 25a^2+20a+4= | | 8-2z=3-z | | 4/7-1/4=3/5x | | 4/7+1/5x-1/4=4/5x | | X-5=x-7 | | 2(b+3)+2b=26, | | 2x4=8+6=14/3 | | (3v-4)(v-4)=0 | | 2x-14=11x | | 6x-2|4=x-2 | | -x-8=2×+1 | | 2a-1=-7 | | 3r+24=26 | | (-2+6i)+6i=2 | | 8m-5=40 | | (-2-6i)+6i=2 | | (2+6i)+6i=2 | | (2-6i)+6i=2 | | 6-2y=7-y | | 6^(-4y)=4 | | (5+2i)(3+4i)=7+26i | | 6^(4y)=4 | | 18=12+3q | | 72y=56 | | 18=4+5q | | 24=12+3q | | -1(x-3)-8=-6(x-7) | | 24=4+5q |